teraction leading to a partial neutralization of the cationic charge.

Registry No. Calcium nitrate tetrahydrate, 10022-68-1; urea, 57-13-6.

## Literature Cited

- (1) Angell, C. A. J. Electrochem. Soc. 1965, 112, 1224.
- (2) Angell, C. A. J. Phys. Chem. 1965, 69, 2137.
  (3) Angell, C. A. J. Phys. Chem. 1966, 70, 3988.
- (4) Angell, C. A. J. Chem. Phys. 1967, 46, 4673.
  (5) Angell, C. A.; Bressel, R. D. J. Phys. Chem. 1972, 76, 3244.
- Ambrus, J. H.; Moynihan, C. T.; Macedo, P. B. J. Electrochem. Soc. (6) 1972, 119, 192.
- Moynihan, C. T.; Smalley, C. R.; Angell, C. A.; Sare, E. J. J. Phys. Chem. 1969, 73, 2287. (7)
- (8) Braunstein, J.; Orr, L.; Alvarez-Funes, A. R.; Braunstein, H. J. Electroanal. Chem. 1966, 15, 337.
- Braunstein, J.; Orr, L.; MacDonald, W. J. Chem. Eng. Data 1967, 12, (9) 415

- (10) Braunstein, J.; Alvarez-Funes, A. R.; Braunstein, H. J. Phys. Chem. 1966, 70, 2734.
- Moynihan, C. T. J. Phys. Chem. 1966, 70, 3399.
- (12) Moynihan, C. T.; Fratielio, A. J. Am. Chem. Soc. 1967, 89, 5546.
  (13) Jain, S. K. J. Chem. Eng. Data 1973, 18, 397.
- (14) Jain, S. K. J. Chem. Eng. Data 1977, 22, 383.
  (15) Jain, S. K. J. Chem. Eng. Data 1978, 23, 170, 216, 266.
  (16) Jain, S. K. J. Phys. Chem. 1978, 82, 1272.
- Jain, S. K.; Tamamushi, R. Sci. Pap. Inst. Phys. Chem. Res. (Jpn). (17)1980. 74. 73.

- Jain, S. K.; Tamamushi, R. Can. J. Chem. **1980**, *58*, 1697.
  Jain, S. K.; Singh, V. V. J. Chem. Eng. Data **1982**, *27*, 84.
  Ewing, W. W.; Mikovsky, R. J. J. Am. Chem. Soc. **1950**, *72*, 1390.
  Cohen, M. H.; Turnbull, D. J. Chem. Phys. **1959**, *31*, 1164.
- (22) Adam, G.; Gibbs, J. H. J. Chem. Phys. 1965, 43, 139.

Received for review September 14, 1982. Accepted June 15, 1983. Financial assistance from the University Grants Commission, Delhi, is thankfully acknowledged.

# Crystallization Curves for Binary Mixtures of Alkanes, Acids, and Alcohols

## G. Giola-Lobbia\* and G. Vitali

Dipartimento di Scienze Chimiche, Università degli Studi, 62032 Camerino, Italy

The liquid-solid temperatures for the binary mixtures n-octacosane + hexadecanoic and dodecanoic acids, diphenvi + n-octacosane or n-tetracosane, cyclododecanol or cyclododecane + n-octacosane or n-tetracosane are measured by using a method previously described. The experimental cryoscopic lowering and thermodynamic values are discussed by comparison with literature data.

## Introduction

In our laboratory we are at present studying (1, 2) the use of group interaction theory in organic mixtures (3, 5) and also parameters affecting the liquid-liquid equilibria (6-8). The statistical treatment of the systems previously studied (1) showed that, when there is high incidence of liquid-liquid equilibrium phenomena, a low coordination number is obtained (example, bicarboxylic acids + monocarboxylic acids, bicarboxylic acids + esters).

We plan to study extensively other binary systems which exhibit these features: a high coordination number (as was the case, in previous work (1), for mixtures with alkanes) and also differences in the polar character of the compounds. With this aim we report liquid-solid equilibrium temperatures for the following binary systems: n-octacosane + hexadecanoic and dodecanoic acids, diphenyl + n-octacosane or n-tetracosane, cyclododecanol or cyclododecane + n-octacosane or n-tetracosane.

#### **Experimental Section**

The experimental method employed has been widely described in previous papers (10, 11). The initial crystallization temperature of the molten mixtures was determined with a chromel-alumel thermocouple (standarized with an NBS-certified Pt resistance thermometer) connected to a Leeds and Northrup type K-5 potentiometer. Pyrex tubes containing

molten mixtures were put into a furnace where the temperature was controlled with a second thermocouple, connected to a Leeds and Northrup CAT control unit. If measurements had to be repeated, an auxiliary heater was used to ensure quick remeltina.

A reliability of better than 0.3 K was expected, while a repeatability of within 0.06 K was obtained with a slow cooling rate (0.3 K/min).

The chemicals used were Fluka or Ega products of high purity and were not purified further before use. They were dried under dynamic vacuum.

## **Results and Discussion**

Experimental values of the crystallization temperature are reported in Table I as a function of mole fraction and are shown in Figures 1–4. In Table II  $\Delta T/m$  values extrapolated to m= 0 are reported. In Table III the coordinates of the eutectic point are given. When the enthalpy of fusion was available from the literature, a comparison between the experimental and thermodynamic cryoscopic constant was possible.

In *n*-tetracosane the solutes behaved regularly as shown by the agreement between  $K_T$  and  $(\Delta T/m)_0$ . In *n*-octacosane, monocarboxylic acids as solutes show  $(\Delta T/m)_0$  values much lower than  $K_{\tau}$ . This behavior may be ascribed to dimer association as previously observed (1, 14). Degrees of association of 0.74 and 0.60 may be calculated for dodecanoic and hexadecanoic acids, respectively, at low concentrations. The behavior of diphenyl-alkanes systems is more complicated. In fact, when diphenyl is the solvent,  $(\Delta T/m)_0 \ll K_T$ , contrary to when alkanes are solvents  $(\Delta T/m)_0 \simeq K_T$ . It is probable that formation of solid solutions occurs in the crystallization zone of diphenyl, while in the crystallization region of the alkane equilibrium occurs between liguid and pure solid alkane. For the alkane in hexadecanoic acid the cryoscopic behavior is regular.  $(\Delta T/m)_0$  values for cyclododecane and cyclododecanoi could not be used for critical analysis owing to the lack of thermodynamic fusion data. The  $(\Delta T/m)_0$  value, concerning the systems with cyclododecane, predicts with reasonable accuracy

Table I. Liquid-Solid Equilibrium Temperatures in the Binary Systems

|           |                 |                                     |                                 | $\frac{X}{X}$ |                     | X      | <u>т к</u>         | X          | <u>т</u> к        | X        | т к            |
|-----------|-----------------|-------------------------------------|---------------------------------|---------------|---------------------|--------|--------------------|------------|-------------------|----------|----------------|
|           | Dodec           | anoie Acid                          | $\perp n \cdot \Omega \circ ta$ | 2<br>cosane   |                     | 2      | Cyclo              | dodecanol  | + <i>n</i> -Ωcta  | <u>-</u> |                |
| 0 0000    | 317.2           | 0 2970                              | 326.4                           | 0 7849        | 333.0               | 0 0000 | 351 3              | 0 2377     | 340 5             | 0 6982   | 331.2          |
| 0.0000    | 316.2           | 0.2370                              | 320.4                           | 0.7045        | 3336                | 0,0000 | 351.0              | 0.2617     | 339.7             | 0.0002   | 332.2          |
| 0.0001    | 315.6           | 0.3040                              | 328.0                           | 0.0007        | 334 1               | 0.0040 | 350.4              | 0.2007     | 337 9             | 0.8737   | 333.0          |
| 0.0142    | 318.8           | 0.0558                              | 328.6                           | 0.9608        | 334 3               | 0.0100 | 349 9              | 0.3731     | 335.4             | 0.0707   | 333.8          |
| 0.0400    | 320.9           | 0.4000                              | 330.5                           | 0.0000        | 334 4               | 0.0200 | 349.3              | 0.4453     | 333.1             | 0.9621   | 334 2          |
| 0.1562    | 323 3           | 0.6172                              | 331.6                           | 0.9830        | 334 5               | 0.0794 | 347.3              | 0.5153     | 330.5             | 0.9796   | 334.4          |
| 0.1002    | 325.3           | 0.6958                              | 3397                            | 1 0000        | 334.7               | 0.1278 | 345.2              | 0.5730     | 330.2             | 0.9904   | 334 5          |
| 0.2001    | 020.0           | 0.0000                              | 002.7                           | 1.0000        | 004. r <sub>0</sub> | 0.1210 | 342.6              | 0.6173     | 330.8             | 1 0000   | 334 7          |
|           | Hexade          | Hexadecanoic Acid + $n$ -Octacosane |                                 |               |                     |        | 042.0              | 0.0170     | 000.0             | 1.0000   | 001.10         |
| 0.0000    | 335.7           | 0.3349                              | 327.7                           | 0.8833        | 333.9               |        | Cyclo              | dodecanol  | + <i>n</i> -Tetra | cosane   |                |
| 0.0124    | 335.4           | 0.4248                              | 328.5                           | 0.9294        | 334.0,              | 0.0000 | 351.3,             | 0.2150     | 339.9             | 0.7796   | 321.3          |
| 0.0295    | 335.1,          | 0.4776                              | 329.5                           | 0.9449        | 334.1               | 0.0082 | 350.8              | 0.2926     | 337.4             | 0.8198   | 320.7          |
| 0.0467    | 334.8           | 0.5318                              | 330.7                           | 0.9758        | 334.4               | 0.0207 | 350.1              | 0.3456     | 335.4             | 0.8587   | 321.7          |
| 0.0928    | 333.8           | 0.5825                              | 331.5                           | 0.9911        | 334.6               | 0.0295 | 349.6              | 0.4080     | 333.0             | 0.9075   | 322.2,         |
| 0.1701    | 332.5           | 0.6389                              | 332.7                           | 1.0000        | 334.7               | 0.0368 | 349.2              | 0.4853     | 330.4             | 0.9508   | 322.9          |
| 0.2521    | 330.3           | 0.7110                              | 333.2                           |               | 00 11 0             | 0.0608 | 347.8              | 0.5512     | 328.3             | 0.9692   | 323.2          |
|           |                 |                                     |                                 |               |                     | 0.0938 | 345.7              | 0.6029     | 326.9             | 0.9863   | 323.5          |
|           | Di              | phenyl + n                          | 1-Octacosa                      | ane           |                     | 0.1329 | 343.6              | 0.6502     | 325.3             | 1.0000   | 323.7.         |
| 0.0000    | 342.2,          | 0.2500                              | 333.4                           | 0.7668        | 331.0               | 0.1900 | 341.2              | 0.7203     | 322.7             |          | 3              |
| 0.0035    | $342.1_{3}$     | 0.3056                              | 331.1                           | 0.8530        | 332.3               |        |                    |            |                   |          |                |
| 0.0114    | 341.8,          | 0.3994                              | 326.2                           | 0.9220        | 333.5               |        | Cyclo              | dodecane - | + n-Octac         | eosane   |                |
| 0.0229    | 341.4           | 0.4602                              | 326.2                           | 0.9523        | 334.0₄              | 0.0000 | $334.2_{0}$        | 0.2538     | 318.1             | 0.7076   | 330.2          |
| 0.0333    | 341.2           | 0.5045                              | 327.3                           | 0.9710        | 334.2               | 0.0057 | 333.8 <sub>s</sub> | 0.2884     | 320.1             | 0.7777   | 331.7          |
| 0.0725    | 339.9           | 0.5848                              | 329.0                           | 0.9855        | 334.4,              | 0.0135 | $333.4_{4}$        | 0.3325     | 321.7             | 0.8484   | 332.4          |
| 0.1277    | 337.5           | 0.6701                              | 329.5                           | 1.0000        | 334.7               | 0.0230 | $332.5_{0}$        | 0.3964     | 324.0             | 0.9077   | 333.2          |
| 0.1872    | 335.7           |                                     |                                 |               | -                   | 0.0534 | 330.5              | 0.4595     | 325.4             | 0.9682   | <b>33</b> 4.2₄ |
|           |                 |                                     | -                               |               |                     | 0.0933 | 327.8              | 0.4995     | 326.1             | 0.9779   | 334.3          |
|           | Dıj             | phenyl + $n$                        | -Tetracos                       | ane           |                     | 0.1347 | 324.6              | 0.5840     | 327.7             | 0.9876   | $334.5_{2}$    |
| 0.0000    | 342.2,          | 0.2529                              | 333.9                           | 0.5857        | 318.0               | 0.1933 | 319.5              | 0.6426     | 329.2             | 1.0000   | 334.7          |
| 0.0072    | $342.0_{\circ}$ | 0.3388                              | 330.5                           | 0.6228        | 318.7               |        | ~ .                |            |                   |          | -              |
| 0.0117    | 341.8,          | 0.3831                              | 328.8                           | 0.6411        | 319.1               |        | Cyclo              | dodecane + | - n-Tetrac        | cosane   |                |
| 0.0222    | $341.5_{0}$     | 0.3946                              | 327.8                           | 0.7178        | 319.8               | 0.0000 | $334.2_{0}$        | 0.2061     | 319.6             | 0.7243   | 319.3          |
| 0.0436    | 340.8           | 0.4359                              | 326.0                           | 0.8043        | 320.6               | 0.0070 | $333.8_{o}$        | 0.2505     | 315.7             | 0.8076   | 320.1          |
| 0.0445    | 340.3           | 0.4771                              | 323.9                           | 0.8820        | 321.8               | 0.0147 | 333.3,             | 0.3041     | 310.8             | 0.8761   | 321.4,         |
| 0.0677    | 339.5           | 0.5122                              | 321.6                           | 0.9424        | 322.7,              | 0.0300 | $332.4_{s}$        | 0.3499     | 310.6             | 0.9043   | 322.1,         |
| 0.0872    | 338.7           | 0.5340                              | 320.8                           | 0.9715        | 323.2               | 0.0537 | 330.9              | 0.4009     | 312.3             | 0.9401   | 322.7,         |
| 0.1200    | 337.6           | 0.5444                              | 319.7                           | 0.9802        | 323.4               | 0.0829 | 329.2              | 0.4594     | 314.3             | 0.9689   | 323.23         |
| 0.1324    | 337.4           | 0.5676                              | 318.6                           | 1.0000        | 323.7               | 0.1143 | 327.3              | 0.5355     | 315.7             | 0.9837   | 323.4          |
| 0.1833    | 336.1           |                                     |                                 |               |                     | 0.1567 | 323.5              | 0.6265     | 317.6             | 1.0000   | 323.7,         |
| Table II. | Experim         | ental and [                         | Thermody                        | namic         |                     | T⁰K    |                    |            |                   |          |                |

Cryoscopic Constants

| solvent               | solute                | $(\Delta T/m)_0$ | K <sub>T</sub> | ref |
|-----------------------|-----------------------|------------------|----------------|-----|
| hexadecanoic acid     | <i>n</i> -octacosane  | 5.2              | 5.2            | 13  |
| cyclododecane         | <i>n</i> -tetracosane | 9.4              |                |     |
| -                     | <i>n</i> -octacosane  | 9.4              |                |     |
| <i>n</i> -tetracosane | cyclododecane         | 5.5              | 5.4            | 16  |
|                       | diphenyl              | 5.6              |                |     |
|                       | cyclododecanol        | 5.4              |                |     |
| <i>n</i> -octacosane  | cyclododecane         | 5.6              | 5.7            | 16  |
|                       | diphenyl              | 5.6              |                |     |
|                       | cyclododecanol        | 5.8              |                |     |
|                       | dodecanoic acid       | 3.6              |                |     |
|                       | hexadecanoic acid     | 4.0              |                |     |
| diphenyl              | <i>n</i> -tetracosane | 5.3              | 8.0            | 12  |
|                       | <i>n</i> -octacosane  | 5.4              |                |     |
| cyclododecanol        | <i>n</i> -tetracosane | 10.7             |                |     |
| -                     | <i>n</i> -octacosane  | 10.6             |                |     |

Table III. Characteristic Points for Binary Systems

| components                                                                                                                                  | $X_{1 (eut)}$                | <i>T</i> , K   |
|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|----------------|
| hexadecanoic acid (1)-n-octacosane (2)<br>dodecanoic acid (1)-n-octacosane (2)                                                              | $0.6190 \\ 0.9882$           | 326.8<br>315.2 |
| diphenyl (1)- <i>n</i> -octacosane (2)<br>diphenyl (1)- <i>n</i> -tetracosane (2)                                                           | $0.5815 \\ 0.4218 \\ 0.7740$ | 325.3<br>317.7 |
| cyclododecane (1)- <i>n</i> -octacosane (2)<br>cyclododecane (1)- <i>n</i> -tetracosane (2)<br>cyclododecanol (1)- <i>n</i> -octacosane (2) | 0.6800<br>0.4620             | 309.0<br>329.4 |
| cyclododecanol(1)-n-tetracosane(2)                                                                                                          | 0.1940                       | 320.2          |

## the cyclododecane liquidus curve.

The coordinates of the eutectic points given in Table III show, as expected, that the crystallization region for one com-



**Figure 1.** Liquid–liquid and liquid–solid equilibrium curves for the binary systems (a) dodecanoic acid + n-octacosane and (b) hexadecanoic acid + n-octacosane.

ponent in a mixture is strongly affected by its melting temperature (15) in comparison to that of the other component. However, in two cases (cyclododecane + *n*-octacosane and



Figure 2. Liquid-liquid and liquid-solid equilibrium curves for the binary systems (a) diphenyl + n-octacosane and (b) diphenyl + n-tetracosane.



Figure 3. Liquid-liquid and liquid-solid equilibrium curves for the binary systems (a) cyclododecane + n-octacosane and (b) cyclododecane + n-tetracosane.

hexadecanoic acid + n-octacosane) where the two components of the binary system have almost the same fusion temperature, the following experimental behavior is observed: in a mixture of A and B, where component A exhibits a higher fusion entropy, the crystallization of A is obtained at higher concentrations of component B. This has been observed previously (11) in some ternary systems with ionic compounds. In



Figure 4. Liquid-liquid and liquid-solid equilibrium curves for the binary systems (a) cyclododecanol + n-tetracosane and (b) cyclododecanol + n-octacosane.

fact, the sums of the melting and transition entropies (occurring in the temperature range investigated) of the compounds are as follows: hexadecanoic acid (13), 32.9 eu; n-octacosane (16), 71.8 eu; and cyclodecane (obtained from  $\Delta T/m$ ) 11.9 eu; octacosane crystallizes over a wider composition range.

Registry No. Octacosane, 630-02-4; tetracosane, 646-31-1; hexadecanoic acid, 57-10-3; dodecanoic acid, 143-07-7; diphenyl, 92-52-4; cyciodecanol, 1724-39-6; cyclododecane, 294-62-2.

#### **Literature Cited**

- Giola Lobbia, G.; Vitali, G.; Berchiesi, M. A.; Berchiesi, G. Ber. Bunsenges. Phys. Chem. 1981, 85, 628-31.
  Berchiesi, G.; Giola Lobbia, G.; Vitali, G.; Berchiesi, M. A. Can. J.
- Ghem. 1981, 59, 1375.
- Kehlanian, H. V. Ber. Bunsenges. Phys. Chem. **1977**, 81, 908. Kehlaian, H. V.; Groller, J. P. E.; Kechavarz, M. R.; Benson, G. C. Fluid Phase Equilib. **1980/81**, 5, 159. (4) (5) Kehialan, H. V.; Guieu, R.; Faraadjzadeh, A.; Carbonnel, L. Ber. Bun-
- Giola Lobbia, G. Int. Data Ser. Sel. Data Mixtures, Ser. A 1981, 1, (6)
- 43–8.
- (7) Berchiesi, G. Int. Data Ser. Sel. Data Mixtures Ser. A 1981, 2. 121-6.
- Giola Lobbia, G.; Berchiesi G.; Berchiesi, M. A.; Vitali, G. J. Therm. (8) Anal. 1979, 16, 41–7. Giola Lobbia, G.; Vitali, G.; Ruffini, R. *Thermochim*. Acta 1982, 59,
- (9) 205-10.
- Braghettl, M.; Leonesi, D.; Franzosini, P. *Ric. Sci.* **1968**, *38*, 116–20. Berchiesi, M. A.; Cingolani, A.; Berchiesi G. *J. Chem. Eng. Data* **1972**, *17*, 61. (10)(11)
- Fritz G.; Bouliet-Krayer, E.; Neheren, R. Eur. At. Energy Community, (12)
- Ispra, Italy, 1965, 2223d. Berchiesi, G.; Leonesi, D.; Cingolani, A. J. Therm. Anal. 1975, 7, (13)659.
- Berchiesi, G.; Cingolani, A.; Leonesi, D. J. Therm. Anal. 1974, 6, 91. Blander, M. "Molten Salts chemistry"; Interscience: New York, 1964, (14) (15)
- p 284. (16) Broadhurst, M. G. J. Res. Natl. Bur. Stand., Sect. A 1962, 66, 241.

Received for review September 21, 1982. Revised manuscript received March 15, 1983. Accepted June 6, 1983.